Stability for discrete velocity models of the extended Boltzmann equation

Milan Miklavčič*

Discrete velocity models of the Boltzmann equation have recently become quite popular, both for their fluid dynamics applications and for the mathematical problems they have raised. Among the latter, a significant role is played by stability of equilibria (the so called Maxwellian states) and related relaxation problems. In some recent papers [1] [2] such a question has been addressed for the extended version of the simplest and most ancient discrete models (Carleman, McKean, and Broadwell).

Here, for example, is the six velocity Broadwell model

\[
\frac{\partial N_1}{\partial t} + \frac{\partial N_1}{\partial x} = N_3^2 - N_1 N_2 - \varepsilon N_1 + \chi_1 \eta p + S_1
\]

(1)

\[
\frac{\partial N_2}{\partial t} - \frac{\partial N_2}{\partial x} = N_3^2 - N_1 N_2 - \varepsilon N_2 + \chi_2 \eta p + S_2
\]

(2)

\[
\frac{\partial N_3}{\partial t} = -\frac{1}{2} (N_3^2 - N_1 N_2) - \varepsilon N_3 + \chi_3 \eta p + S_3
\]

(3)

on the line \((-\infty < x < \infty)\), where \(\rho = N_1 + N_2 + 4N_3\). Parameters \(\varepsilon > 0, \eta > 0, \chi_1 \geq 0, \chi_2 \geq 0, \chi_3 \geq 0\) are constants such that \(\chi_1 + \chi_2 + 4\chi_3 = 1\). \(S_i \geq 0\) are sources and \(S = S_1 + S_2 + 4S_3 > 0\). \(\varepsilon\) represents an absorption coefficient, and \(\eta\) takes generation processes (like fission for neutrons, or ionization for electrons) into account. \(\chi_i\) describe the angular distribution of generated particles. Nonlinear stability of Maxwellian states on the line was shown in [2]. For the Carleman equations this was done in [3]. Conditions under which the Maxwellian states are linearly unstable in a bounded region \((0 < x < 1)\) were obtained in [1].

Similar equations may appear when studying transport between cells.

References


*Department of Mathematics, A231 Wells Hall, Michigan State University, East Lansing, Michigan 48824 (milan@math.msu.edu, (517) 353-6086, http://www.mth.msu.edu/milan/)*